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This is an adapted version of some notes I took on the prime number theorem
for a directed reading program (DRP) on analytic number theory. Much (but
not all) of these notes were primarily taken from Complex Analysis by Elias
M. Stein and Rami Shakarchi. Additional notes are mainly on things my DRP
mentor, Nicholas Backes, shared with me, as well as certain online reading such
as from certain Wikipedia articles.

1 Preliminaries

Basic complex analysis is assumed. Some other helpful tools are included below.

1.1 Some useful facts from Fourier analysis

The Fourier transform of f is a function f̂ given by

f̂(ξ) =

∫ ∞
−∞

f(x)e−2πiξx dx

and this transformation can be inverted (under certain conditions) to recover
back f with

f(x) =

∫ ∞
−∞

f̂(ξ)e2πiξx dξ.

We can think about the Fourier transform as a kind of projection onto a vector
space with basis vectors {eξ} using the inner product

⟨f, g⟩ =
∫ ∞
−∞

f(x)g(x) dx

(the overline indicates complex conjugate).

Definition 1.1 (Schwartz function). A C∞ function f is said to be Schwartz
if xnf (k)(x) → 0 as |x| → ∞ for all k ≥ 0; in words, f and all of its derivatives
decay faster than all polynomials grow.

For example, e−x
2

is Schwartz (an important example of such a function–it
will be relevant later on). A key fact about the space of Schwartz functions is
the following.
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Theorem 1.2. Let S be the set of Schwartz functions (in this case, over R).
Then the Fourier transform is an automorphism on S.

As an example, consider the Fourier transform of f(x) = e−x
2

:

f̂(ξ) =

∫ ∞
−∞

e−x
2

e−2πiξx dx =

∫ ∞
−∞

e−x
2−2πiξx dx =

∫ ∞
−∞

e−(x+πiξ)2−π2ξ2 dx

= e−π
2ξ2

∫ ∞
−∞

e−t
2

dt =
√
πe−π

2ξ2

which is another Gaussian (and must indeed be Schwartz as well).

1.1.1 The Poisson summation formula

Consider a function f ∈ S. As lim
x→±∞

x2f(x) = 0, we know that the sum∑
n∈Z

f(n)

converges. The Poisson summation formula provides a useful technique for
evaluating such sums.

Theorem 1.3 (Poisson summation formula). For a Schwarz function f ,∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Proof. Consider the function

F (x) =
∑
n∈Z

f(x+ n)

Clearly F is periodic with period 1, as

F (x+ 1) =
∑
n∈Z

f(x+ n+ 1) =
∑
m∈Z

f(x+m)

where m = n + 1 (some simple reindexing). Thus, we can find a Fourier series∑
n∈Z ane

2πinx for F , with Fourier coefficients

an =

∫ 1

0

F (x)e−2πinx dx =

∫ 1

0

∑
n∈Z

f(x+ n)e−2πinx dx

=
∑
n∈Z

∫ 1

0

f(x+ n)e−2πinx dx =
∑
n∈Z

∫ n+1

n

f(t)e−2πin(t−n) dt

=
∑
n∈Z

∫ n+1

n

f(t)e−2πint dt =

∫ ∞
−∞

f(t)e−2πint dt = f̂(n)

This means that ∑
n∈Z

f(x+ n) = F (x) =
∑
n∈Z

f̂(n)e2πinx

Now set x = 0 and we are done.
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1.2 Mellin transform

The Mellin transform of a function f is given by

M(f)(s) =

∫ ∞
0

xs−1f(x) dx

and the inverse Mellin transform of φ is given by

f(x) =
1

2πi

∫
Re(z)=c

x−sφ(s) dx.

Notice that is is an integral taken over the line x = c in the complex plane. We
take this integral moving upwards along the line.

As an example, the Mellin transform of the function f(x) = e−x is

M(f)(s)

∫ ∞
0

xs−1e−x dx = Γ(s)

where Γ is the gamma function, which will be of use later.
Though not strictly required here, the Mellin transform can provide a useful,

alternative way of looking at some of the results that will be presented.

2 The gamma function

The gamma function is defined for s > 0 by

Γ(s) =

∫ ∞
0

xs−1e−x dx.

This extends to an analytic function in the half-plane Re(s) > 0 and is given by
the same formula for such complex s. We can observe by integration by parts
that Γ(s + 1) = sΓ(s), and as a consequence it follows that Γ(n + 1) = n! for
nonnegative integers n (since Γ(1) = 1).

We can actually extend this further, and take an analytic continuation of
Γ defined for all s except the nonpositive integers. Following the rule derived
from integration by parts, it could make sense for Re(s) > −1 to define

Γ(s) = F1(s) =
Γ(s+ 1)

s
.

This definition is consistent with the gamma function as usually defined, and we
have extended Γ to a meromorphic function on the half-plane Re(s) > 1 with
one pole at s = 0. In general now, define

Fm(s) =
Γ(s+m)

(s+m− 1)(s+m− 2) · · · (s+ 1)s
.
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This is meromorphic for Re(s) > −m with simple poles for s = −m+ 1,−m+
2, . . . ,−1, 0. The residues at these poles are

Res
s=−n

Fm(s) =
Γ(m− n)

(m− n− 1)!(−1)(−2) · · · (−n)
=

(−1)n

n!
.

We can see that for all m, Fm agrees with Γ when Re(s) > 0. By the uniqueness
of analytic continuation, it must be that whenever −m < Re(s) < −m+ 1 that
the unique value of any analytic continuation of Γ at s must be Fm(s), and thus
we have obtained the analytic continuation for Γ.

We will now derive a functional equation for Γ. This requires first establish-
ing the following result:

Lemma 2.1. For 0 < a < 1,∫ ∞
0

va−1

1 + v
dv =

π

sin(aπ)
.

Proof. Notice that with the substitution v = ex, we obtain∫ ∞
0

va−1

1 + v
dv =

∫ ∞
−∞

eax

1 + ex
dx.

Therefore, it suffices to show that∫ ∞
−∞

eax

1 + ex
dx =

π

sin(aπ)
.

This will be done through the use of contour integration. Consider a contour
γR which looks like the following:

−R R

2πi γR

πi−

Figure 1: The contour

We will integrate f(z) = eaz

1+ez over γR. f is meromorphic, with singularities
whenever ez = −1, so z = πi + 2πk for k ∈ Z. The only such z in the interior
of our region is z = πi, so this is the only point at which we need to compute a
residue. We find that

Res
z=πi

(
eaz

1 + ez

)
=
eaπi

eπi
= −eaπi.
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So, by the residue theorem, we have

IγR
=

∮
γR

eaz

1 + ez
dz = −2πieaπi.

Write
IγR

= Ir(R) + Iu(R) + Iℓ(R) + Id(R),

where Ir(R) is the integral along the real line

Ir(R) =

∫ R

−R
f(z) dz −−−−→

R→∞
I,

Iu(R) is the integral over {R+ it : 0 ≤ t ≤ 2π} (upwards), Iℓ(R) is the integral
over {−t + 2πi : −R ≤ t ≤ R} (leftwards), and Id(R) is the integral over
{−R + (2π − t)i : 0 ≤ t ≤ 2π} (downwards). Using the parameterization over
the upwards line, we see

|Iu(R)| ≤
∫ 2π

0

∣∣∣∣ ea(R+it)

1 + eR+it

∣∣∣∣ dt ≤ ∫ 2π

0

∣∣∣∣ eaR

1 + eR+it

∣∣∣∣ dt ≤ ∫ 2π

0

∣∣∣∣ eaR

eR − 1

∣∣∣∣ dt
≤ 2πeaR

eR − 1
=

2πe(a−1)R

1− e−R
≤ 2πe(a−1)R.

This quantity tends to 0 asR→ ∞, as−1 < a−1 < 0. Similarly, Id(R) −−−−→
R→∞

0.

For Iℓ(R), we can see that

Iℓ(R) = −
∫ R

−R

ea(2πi−t)

1 + e2πi−t
dt = −e2πia

∫ R

−R

e−at

1 + e−t
dt

= e2πia
∫ −R
R

eau

1 + eu
du = −e2πiaIr(R).

This means that
−2πieaπi = lim

R→∞
Ir(R)(1− e2πia)

so

I =
2πieaπi

e2πia − 1
=

2πi

eπia − e−πia
=

π

sin(aπ)
.

We obtain the following functional equation as a consequence.

Theorem 2.2. For all s ∈ C\Z,

Γ(s)Γ(1− s) =
π

sin(πs)
.
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Proof. It suffices to show that this holds for 0 < s < 1. Then, by analytic
continuation, it should hold on all of C. Notice that

Γ(1− s) =

∫ ∞
0

e−uu−s du = t

∫ ∞
0

e−vt(vt)−s dv

where the change of variable u 7→ tv was made for some t > 0. With this change
of variable, it can be seen that

Γ(s)Γ(1− s) =

∫ ∞
0

e−tts−1Γ(1− s) dt =

∫ ∞
0

e−tts
(∫ ∞

0

e−vt(vt)−s dv

)
dt

=

∫ ∞
0

∫ ∞
0

e−t(1+v)v−s dv dt =

∫ ∞
0

v−s

1 + v
dv =

π

sin(πs)

(as all terms are positive, the order of integration was able to be switched to
arrive at the last integral, and the identity sin(π(1−s)) = sin(πs) was used).

As a consequence, 1/Γ is entire with simple zeros at the nonpositive integers.

3 The zeta function

The zeta function is initially defined for real s > 1 by

ζ(s) =

∞∑
n=1

1

ns
.

Note that the sum is convergent whenever Re(s) > 1, and it is in fact holomor-
phic in this region (as a consequence of uniform convergence).

3.1 Analytic continuation

To analytically continue ζ, we will need to see its relation to Γ. Before this, we
first consider a new function, the theta function.

Definition 3.1. The theta function is defined for real t > 0 by

ϑ(t) =

∞∑
n=−∞

e−πn
2t.

Theorem 3.2. The theta function satisfies the functional equation

ϑ(t) = t−1/2ϑ(1/t).

Proof. Let ft(x) = e−πx
2t. Computing the Fourier transform of ft, we see

f̂t(x) =

∫ ∞
−∞

e−πx
2te2πiξx dx =

∫ ∞
−∞

e−πt(x
2− 2iξ

t x) dt

=

∫ ∞
−∞

e−πt(x−
iξ
t )

2−π
t ξ

2

dx =
1√
t
e−πξ

2/t.
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By the Poisson summation formula (1.3) and Fubini’s theorem, we have

ϑ(t) =

∞∑
n=−∞

e−πn
2t =

∞∑
n=−∞

t−1/2e−πξ
2/t = t−1/2ϑ(1/t).

By this functional equation, ϑ is O(t−1/2) around t = 0. Additionally,

|ϑ(t)− 1| = 2

∞∑
n=1

e−πn
2t ≤ 2

∞∑
n=1

e−πnt ≤ Ce−πt

By these bounds, a infinite sum-integral interchange is again justified by Fubini’s
theorem when showing the following result:

Lemma 3.3. If Re(s) > 1, then

π−s/2Γ(s/2)ζ(s) =
1

2

∫ ∞
0

us/2−1(ϑ(u)− 1) du.

Proof. Consider the integral ∫ ∞
0

e−πn
2uus/2−1 du.

Make a substitution t = πn2u to get∫ ∞
0

e−πn
2uus/2−1 du = (πn2)−s/2

∫ ∞
0

e−tts/2−1 dt = π−s/2Γ(s/2)n−s.

Notice that
ϑ(u)− 1

2
=

∞∑
n=1

e−πn
2u

so

1

2

∫ ∞
0

us/2−1(ϑ(u)− 1) du =

∫ ∞
0

us/2−1
∞∑

n=1

e−πn
2u du =

∞∑
n=1

∫ ∞
0

us/2−1e−πn
2u du

=

∞∑
n=1

π−s/2Γ(s/2)n−s = π−s/2Γ(s/2)ζ(s).

Now, we define the xi function for Re(s) > 1 by

ξ(s) = π−s/2Γ(s/2)ζ(s).
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Theorem 3.4. The xi function is holomorphic for Re(s) > 1. Additionally, it
has an analytic continuation to all of C as a meromorphic function with simple
poles at s = 0 and s = 1, and it satisfies the functional equation

ξ(s) = ξ(1− s)

for all s ∈ C.

Proof. Let ψ(u) = (ϑ(u)− 1)/2. By the functional equation for ϑ (3.2),

ψ(u) = u−1/2ψ(1/u) +
u−1/2

2
− 1

2

Using 3.3, we have

π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

us/2−1ψ(u) du

=

∫ 1

0

us/2−1ψ(u) du+

∫ ∞
1

us/2−1ψ(u) du

=

∫ 1

0

us/2−1
(
u−1/2ψ(1/u) +

u−1/2

2
− 1

2

)
du+

∫ ∞
1

us/2−1ψ(u) du

=

∫ 1

0

1

u

(
u(s−1)/2ψ(1/u) +

u(s−1)/2

2
− us/2

2

)
du+

∫ ∞
1

us/2−1ψ(u) du

=
1

s− 1
− 1

s
+

∫ 1

0

u(s−1)/2
ψ(1/u)

u
du+

∫ ∞
1

us/2−1ψ(u) du.

Making a substitution t = 1/u on the first remaining integral gives∫ 1

0

u(s−1)/2
ψ(1/u)

u
du = −

∫ 1

∞
t(1−s)/2

ψ(t)

t
dt =

∫ ∞
1

t(1−s)/2
ψ(t)

t
dt

so

π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

us/2−1ψ(u) du

=
1

s− 1
− 1

s
+

∫ ∞
1

(
u(1−s)/2 + us/2

) ψ(u)
u

du.

Thus, for Re(s) > 1 we can write

ξ(s) =
1

s− 1
− 1

s
+

∫ ∞
1

(
u(1−s)/2 + us/2

) ψ(u)
u

du.

The integral term converges for all s ∈ C since ψ(u) decreases with an expo-
nential upper bound as u → ∞, so this is defined and holomorphic everywhere
except s = 0 and s = 1 (at these points, ξ has simple poles).

Corollary 3.4.1. The zeta function has a meromorphic continuation into the
entire complex plane with one singularity as a simple pole at s = 1.
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Proof. Recall the definition of the xi function, and consider

ζ(s) =
πs/2ξ(s)

Γ(s/2)
.

1/Γ(s/2) is entire, and the simple pole of ξ at s = 0 is canceled by the zero of
1/Γ(s/2) at s = 0. Only the s = 1 pole remains.

3.2 Relation to prime numbers

The ζ function is related to prime numbers, as indicated by the Euler product:

Theorem 3.5 (Euler product for the zeta function). If Re(s) > 1, then

ζ(s) =
∏

p prime

1

1− p−s

Proof. Observe that by geometric series,

1

1− p−s
= 1 +

1

ps
+

1

p2s
+ · · ·+ 1

pMs
+ · · ·

We will need this in the proof of the identity. Suppose that we have two positive
integers M and N , where M > N . By the fundamental theorem of arithmetic,
we can express any n ≤ N by a unique prime factorization. Each prime in this
factorization must be at most N and repeated less than M times, so

N∑
n=1

1

ns
≤

∏
p≤N

(
1

ps
+

1

p2s
+ · · ·+ 1

pMs

)
≤

∏
p≤N

(
1

1− p−s

)

≤
∏

p prime

(
1

1− p−s

)
We let N tend to infinity to obtain one direction of the inequality:

∞∑
n=1

1

ns
≤

∏
p prime

(
1

1− p−s

)
and of course, the product on the right converges as

∑
p prime

∣∣∣∣ 1

1− p−s
− 1

∣∣∣∣ = ∑
p prime

∣∣∣∣ 1

ps − 1

∣∣∣∣ ≤ ∞∑
n=1

∣∣∣∣ 1

ns − 1

∣∣∣∣ <∞

To show the reverse direction on the right (which would show the product
converges anyway), we use the funamdental theorem of arithmetic to write

∏
p≤N

(
1

ps
+

1

p2s
+ · · ·+ 1

pMs

)
≤
∞∑

n=1

1

ns
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Then, if we take M → ∞ we obtain

∏
p≤N

(
1

1− p−s

)
≤
∞∑

n=1

1

ns

and we take N → ∞ to complete the proof.

One other way we can see this result is by directly appealing to the funda-
mental theorem of arithmetic. First, notice that by geometric series,

∞∑
k=1

p−ks =
1

1− p−s
.

Using this, we may write the Euler product as

∏
p prime

∞∑
k=1

p−ks = (1+2−s+2−2s+. . .)(1+3−s+3−2s+. . .)(1+5−s+5−2s+. . .) · · ·

If we pick any natural number n, then n−s must appear in this product exactly
once, by the existence and uniqueness of prime factorization. This means that
we have a sum of n−s for all natural numbers, “establishing” the equivalence

∏
p prime

1

1− p−s
=

∞∑
n=1

1

ns
.

3.3 Locations of zeros

Definition 3.6 (Critical strip). The critical strip is {s : 0 ≤ Re(s) ≤ 1}.

This strip takes on an important role in studying the zeros of ζ:

Theorem 3.7. The only zeros of ζ outside the critical strip are all the negative
even integers, s = −2,−4,−6, . . ..

Proof. Recall 3.4.1, which lets us write

ζ(s) = πs−1/2Γ((1− s)/2)

Γ(s/2)
ζ(1− s).

Notice that for Re(s) < 0, the following hold:

1. ζ(1− s) has no zeros, as Re(1− s) > 1

2. Γ((1− s)/2) also has no zeros

3. 1/Γ(s/2) has zeros whenever s/2 is a negative integer (so s is a negative
even integer)

This, combined with the known fact that ζ(s) ̸= 0 for Re(s) > 1, shows the
desired result.
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Zeros in the critical strip are known as non-trivial zeros; the negative integers
are the trivial zeros. The well-known Riemann hypothesis proposes an even
stronger statement about such zeros: namely, that all non-trivial zeros of ζ
have real part equal to 1/2.

3.3.1 No zeros with real part 1

We have already shown at all nontrivial solutions to ζ(s) = 0 lie in the critical
strip 0 ≤ Re(s) ≤ 1. We now rule out Re(s) = 1, as done in Theorem 1.2 on
page 185 of Stein and Shakarchi.

To show this, we will rely on the following two identities, which I will not
include the proofs for here:

1. If Re(s) > 1, then

log ζ(s) =
∑

p prime

∞∑
m=1

p−ms

m
=

∞∑
n=1

cnn
−s

where cn = 1/m if n = pm and cn = 0 otherwise.

2. For θ ∈ R, 3 + 4 cos θ + cos 2θ ≥ 0.

As a result, we have

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)| ≥ 0.

Proof. If we write s = σ + it, then

Re(n−s) = Re(n−σn−it) = n−σ cos(t log n)

and thus

log |ζ3(σ)ζ4(σ + it)ζ(σ + 2it)|
= 3 log |ζ(σ)|+ 4 log |ζ(σ + it)|+ log |ζ(σ + 2it)|
= 3Re[log ζ(σ)] + 4Re[log ζ(σ + it)] + Re[ζ(σ + 2it)]

=
∑
n

cnn
−σ(3 + 4 cos θn + cos 2θn) ≥ 0

where θn = t log n.

As a consequence, ζ(s) is zero-free for Re(s) = 1. This is seen by using
holomorphicity at 1 + it for real t ̸= 0 and the fact that logarithms of real
numbers between 0 and 1 are negative. Thus, we establish the theorem

Theorem 3.8. ζ(1 + it) ̸= 0 for all t ∈ R.
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3.4 Estimates for 1/ζ

Theorem 3.9. For every ϵ > 0, 1/|ζ(s)| ≤ cϵ|t|ϵ when s = σ + it, σ ≥ 1, and
|t| ≥ 1.

The proof of this theorem can be found on pages 187-188 of Stein and
Shakarchi (Prop. 1.6.).

4 Proof of the prime number theorem

4.1 Definitions of some functions

Definition 4.1 (Prime counting function). The function π is known as the
prime-counting function, and

π(x) =
∑
p≤x

1 = number of primes ≤ x.

As its name suggests, it counts primes.

4.1.1 Some auxiliary functions

Chebyshev introduced a ψ function:

Definition 4.2 (Psi function). Chebyshev’s ψ function is defined by

ψ(x) =
∑

pm≤x

log p =
∑
p≤x

⌊
log x

log p

⌋
log p.

The behavior of this function can be used to make statements about π(x),
while also being a lot easier to work with analytically.

Definition 4.3 (Von Mangoldt function). The Von Mangoldt function is defined
by

Λ(n) =

{
p if n = pm for some prime p and integer m ≥ 1,

0 otherwise.

Using the Von Mangoldt function, we may write

ψ(x) =
∑

1≤n≤x

Λ(n).

4.2 A sequence of propositions

In this section, a sequence of propositions are stated. These are used to even-
tually build a proof of the prime number theorem (Section 4.4):
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Theorem 4.4 (Prime number theorem). The prime counting function π satis-
fies

lim
n→∞

π(x)

x/ log x
= 1.

For notational convenience, we define the following:

Definition 4.5 (Asympototic). Two functions f(x) and g(x) on R are said to
be asymptotic as x→ ∞ if

lim
x→∞

f(x)

g(x)
= 1.

We write this as f(x) ∼ g(x).

With this notation, we may write the prime number theorem as π(x) ∼
x/ log x.

Proposition 4.6. If ψ(x) ∼ x, then π(x) ∼ x/ log x.

Proof. We have that

ψ(x) =
∑
p≤x

⌊
log x

log p

⌋
log p ≤

∑
p≤x

log x = π(x) log x

and thus

1 = lim
x→∞

ψ(x)

x
≤ lim inf

x→∞

π(x)

x/ log x
.

For the other direction, fix an arbitrary α ∈ (0, 1). Then,

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα<p≤x

log p ≥ (π(x)− π(xα)) log xα

from which it follows that

ψ(x) + απ(xα) log x ≥ απ(x) log x.

Dividing both sides by x, we have

ψ(x)

x
+ α

π(xα) log x

x
≥ α

π(x)

x/ log x
.

Since π(x) ≤ x, we have

α
π(x)

x/ log x
≤ ψ(x)

x
+ αxα−1 log x

but α− 1 ∈ (−1, 0), so this term vanishes as x→ ∞, and thus

lim sup
x→∞

α
π(x)

x/ log x
≤ lim

x→∞

ψ(x)

x
= 1.

Since α < 1, we have

lim sup
x→∞

π(x)

x/ log x
≤ 1

completing the proof.
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As an additional remark, this is an if and only if condition. The other
direction can be shown similarly, but is not needed for our purposes.

The next proposition follows as a consequence. First, we define the function
ψ1 by

ψ1(x) =

∫ x

1

ψ(u) du.

Note that since ψ(u) = 0 for 0 ≤ u ≤ 1, equality holds if we replace the lower
limit of integration with 0.

It turns out the following is true:

Proposition 4.7. If ψ1(x) ∼ x2/2, then π(x) ∼ x/ log x.

This follows from the fact that ψ1(x) ∼ x2/2 implies that ψ(x) ∼ x; this
statement may seem rather intuitive, and an interested reader can find the proof
of it on page 190 of Stein and Shakarchi. By 4.6, this would further imply that
π(x) ∼ x/ log x.

4.3 A closer look at ψ1

We can relate ψ1 with ζ. Recall that

log ζ(s) =
∑

p prime

∞∑
m=1

p−ms

m
.

Differentiating to get the logarithmic derivative of ζ, we have

ζ ′(s)

ζ(s)
= −

∑
p prime

∞∑
m=1

(log p)p−ms = −
∞∑

m=1

Λ(m)

ms
.

We can switch the signs of each side, providing us with something that will be
useful:

−ζ
′(s)

ζ(s)
=

∞∑
n=1

Λ(n)

ns
. (1)

Proposition 4.8. For all c > 1,

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds.

One may notice that this integral seems to be an inverse Mellin transform.
This is no coincidence, and can be studied further in this manner if desired.

Lemma 4.9. If c > 0, then

1

2πi

∫ c+i∞

c−i∞

as

s(s+ 1)
ds =

{
0 0 < a ≤ 1

1− 1/a 1 ≤ a

This integral is taken over the vertical line Re(s) = c, and converges as |as| = ac.

14



To evaluate this integral, we consider a semicircular contour centered at (c, 0)
with a vertical line segment along Re(s) = c and an arc going counterclockwise
from (c, r) to (c,−r). For sufficiently large r, the sum of the residues is 1− 1/a,
and so it remains to show that the part along the arc vanishes as r → ∞
(which is done using a standard ML inequality argument). These steps prove
the desired result for a ≥ 1.

For 0 < a < 1, we consider a similar contour but it is on the right side,
going counterclockwise from (c,−r) to (c, r). Since there are no poles inside
this contour, the sum of residues is zero there.

Now we may prove 4.8. Let fn(u) = 1 if n ≤ u and 0 otherwise. Then

ψ(u) =

∞∑
n=1

Λ(u)fn(u).

so, by definition of ψ1,

ψ1(x) =

∫ x

0

∞∑
n=1

Λ(u)fn(u) =

∞∑
n=1

∫ x

0

Λ(n)fn(u) du =
∑
n≤x

Λ(n)(x− n),

and then using (1) and 4.9 we have

1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
ds =

1

2πi

∫ c+i∞

c−i∞

∞∑
n=1

xns (x/n)s

s(s+ 1)

Λ(n)

ns
ds

=

∞∑
n=1

Λ(n)x
1

2πi

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds

=

∞∑
n=1

Λ(n)x
(
1− n

x

)
=

∞∑
n=1

Λ(n)(x− n)

= ψ1(x),

proving 4.8.

4.3.1 Riemann’s explicit formula

This relates to Riemann’s explicit formula,

ψ(x) =
1

2πi

∫ c+i∞

c−i∞

xs

s

(
−ζ
′(s)

ζ(s)

)
ds

= x−
∑
ρ

xρ

ρ
− log(2π)− 1

2
log(1− x−2)

for any x where ψ(x) is equal to its left-side limit (so x ̸= 2, 3, 4, 5, 7, 8, 9, 11, . . .),
where ∑

ρ

xρ

ρ
= lim

T→∞

∑
Im(ρ)≤T

xρ

ρ

15



with ρ referring to non-trivial zeros of the zeta function. The first equality
follows by differentiation, and the second from an application of the residue
theorem, noting that ζ ′(0)/ζ(0) = log(2π).

The later two terms in Riemann’s explicit formula are comparatively small,
and can be written as O(1). Also notice that this formula relates the location of
non-trivial zeros of ζ to a bound on |ψ(x)−x|. This suggests that the bound on
the error of the prime number theorem, π(x) ∼ x/ log x, relates to the locations
of these zeros. If true, the Riemann hypothesis would provide the strongest
possible such bound.

4.4 Proving the main result

We are now at a position where we are ready to prove the prime number theorem
in a few steps. Fix some c > 1, and let F (s) denote the (familiar) integrand

F (s) =
xs+1

s(s+ 1)

(
−ζ
′(s)

ζ(s)

)
.

As per the treatment in Stein and Shakarchi, we will use the following:

• 4.8, relating ψ1 to ζ using the integrand F (s),

• 3.8, which states ζ(1 + it) ̸= 0 for all t ∈ R, as well as the estimates
provided by 3.9 and the following:

Proposition 4.10. Suppose s = σ+ it where σ, t ∈ R. Then, for each σ0
satisfying 0 ≤ σ0 ≤ 1 and every ϵ > 0, there exists a constant cϵ so that

(i) |ζ(s)| ≤ cϵ|t|1−σ0+ϵ if σ0 ≤ σ and |t| ≥ 1,

(ii) |ζ ′(s)| ≤ cϵ|t|ϵ if 1 ≤ σ and |t| ≥ 1.

(proposition 2.7 from Chapter 6 of Stein and Shakarchi, found on page
173).

Recall that

ψ1(x) =

∫ c+i∞

c−i∞
F (s) ds.

We may deform the line Re(s) = c into a new contour while keeping the integral
the same, as shown in the following figure. T ≥ 3 will be chosen appropriately
large later. The curve γ(T ) has real part 1 for | Im(s)| = |t| ≥ T , and stretches
horizontally to reach the Re(s) = c line before returning later.

The lack of poles of F when Re(s) > 1 and Re(s) = 1, Im(s) ̸= 0, allows us
to show by the Cauchy integral theorem that

ψ1(x) =

∫
γ(T )

F (s) ds.

16



·
s = 1

Re(s) = c

↑ ·
s = 1

↑

γ(T )

·
s = 1

γ1 ↑

←
γ2

γ3 ↑

γ4
→

γ5 ↑

γ(T, δ)

Figure 2: The original line, the path γ(T ), and the path γ(T, δ)

We can also make use of another contour, γ(T, δ), as detailed in the figure.
Again, here the parts lying along Re(s) = 1 (so, γ1 and γ5) have |t| ≥ T . Along
γ2 and γ4, which have constant imaginary part ±T , 1− δ ≤ Re(s) ≤ 1.

Now, we consider going from γ(T ) to γ(T, δ), where δ is chosen to be small
enough so that there are no zeros of ζ in {σ+ it : 1− δ < σ < 1, |t| < T} (which
is possible by continuity and the fact that ζ has a pole at s = 1).

By applying the argument principle to ζ ′/ζ, it can be seen that

Res
s=1

F (s) =
x2

2
.

Thus,
1

2πi

∫
γ(T )

F (s) ds =
x2

2
+

1

2πi

∫
γ(T,δ)

F (s) ds.

It remains to bound F over γ(T, δ), which is decomposed into γ1+γ2+γ3+γ4+γ5.
Along γj for j = 1, 5, we have |x1+s| = x1+1 = x2, |ζ ′(s)/ζ(s)| = O(

√
|t|), so∣∣∣∣∣

∫
γj

F (s) ds

∣∣∣∣∣ ≤ Cx2
∫ ∞
T

|t|−3/2 dt < ϵ

4
x2

for sufficiently large T . On γ3, notice that |xs+1| = x1+1−δ = x2−δ and thus,

17



depending on T , we have some constant such that∣∣∣∣∫
γ3

F (s) ds

∣∣∣∣ ≤ CTx
2−δ.

For the horizontal segments γj (j = 2, 4), we have (for some C ′T > 0) that∣∣∣∣∣
∫
γj

F (s) ds

∣∣∣∣∣ ≤ C ′T

∫ 1

1−δ
xσ dσ ≤ C ′T

x2

log x
.

Recalling that

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞
F (s) ds =

1

2πi

∫
γ(T )

F (s) ds,

we have by the triangle inequality that∣∣∣∣ψ1(x)−
x2

2

∣∣∣∣ ≤ ϵ

4
x2 + CTx

2−δ + 2C ′T
x2

log x
.

Now, dividing both sides by x2/2, we obtain∣∣∣∣ψ1(x)

x2/2
− 1

∣∣∣∣ ≤ ϵ

2
+ 2CTx

−δ + 4C ′T
1

log x
.

For sufficiently large x, we can make 2CTx
−δ and 4C ′T / log x sufficiently small

(less than ϵ/4 each), and thus ∣∣∣∣ψ1(x)

x2/2
− 1

∣∣∣∣ < ϵ

Since the choice of ϵ > 0 is arbitrary, this means that

lim
x→∞

ψ1(x)

x2/2
= 1

or, using tilde notation, that ψ1(x) ∼ x2/2. Through 4.7, we obtain

Theorem 4.4 (Prime number theorem). The prime counting function π satis-
fies

lim
x→∞

π(x)

x/ log x
= 1.

This completes the proof of the prime number theorem.
We now look at some consequences of the prime number theorem.
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5 A look at some consequences

The following corollary gives us an asymptotic for the n-th prime number, pn.

Corollary 5.0.1. If pn denotes the n-th prime number, pn satisfies

pn ∼ n log n.

For this, we need the following lemma.

Lemma 5.1. Suppose f(n) ∼ g(n) and that there exists constants N ∈ N and
M > 1 such that for n ≥ N , g(n) ≥M . Then, log f(n) ∼ log g(n).

Proof. By assumption, f(n) ∼ g(n), so

lim
n→∞

f(n)

g(n)
= 1

Thus, if we choose some ϵ > 0 such that ϵ ≤ A (where A < 1 is fixed), there
exists an N1 ∈ N such that for n ≥ N ,

1− ϵ <
f(n)

g(n)
< 1 + ϵ

Multiplying the inequality by g(n) and taking a logarithm, we have

log(1− ϵ) + log g(n) < log f(n) < log(1 + ϵ) + log g(n)

Therefore, we have

1 +
log(1− ϵ)

log g(n)
<

log f(n)

log g(n)
< 1 +

log(1 + ϵ)

log g(n)

Applying the inequality log(1 + x) ≤ x and using that for 0 < ϵ < A,

log(1− ϵ) ≥ − log(1−A)

A
ϵ,

we obtain

1− 2ϵ

A log g(n)
<

log f(n)

log g(n)
< 1 +

ϵ

log g(n)
,

and log g(n) ≥ logM when n ≥ N2 for some N2 ∈ N, so with n ≥ max{N1, N2}
we have

1− 2ϵ

A logM
<

log f(n)

log g(n)
< 1 +

ϵ

logM
.

This effectively completes the proof.

Exercise 1. There is a much simpler proof of this result. Find it!

Using this lemma, we may prove that pn ∼ n log n, where pn is the n-th
prime number, as a consequence of the prime number theorem.
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Proof. By the prime number theorem, we have π(x) ∼ x/ log x. Since limx→∞ x/ log x =
∞, we may apply 5.1 to obtain log π(x) ∼ log(x/ log x), and log(x/ log x) =
log x− log log x. As a consequence, we have

log π(x)

log x
∼ 1− log log x

log x
∼ 1

Thus, if we let x = pn, we have

log n

log pn
∼ 1, or log n ∼ log pn.

since π(pn) = n. Turning back to the prime number theorem, we have n ∼
pn/ log pn. So, we can compute

lim
n→∞

pn
n log n

= lim
n→∞

pn
n log pn

log pn
log n

= (1)(1) = 1

showing that pn ∼ n log n.

Another result is another asymptotic relation for the prime counting func-
tion.

Definition 5.2 (Logarithmic integral). The logarithmic integral is the function
Li given by

Li(x) =

∫ x

2

1

log t
dt.

Corollary 5.2.1. We have that

π(x) ∼ Li(x).

Proof. Since ∼ is an equivalence relation, it suffices to show

x

log x
∼ Li(x).

Let us proceed in this manner. By the use of L’Hopital’s rule twice, we find

lim
x→∞

Li(x)

x/ log x
= lim

x→∞

Li(x) log x

x
= lim

x→∞

(
1 +

1

x
Li(x)

)
= 1 + lim

x→∞

Li(x)

x

= 1 + lim
x→∞

1

log x
= 1.

It turns out that this provides a better approximation to π(x) than x/ log x,
and that following Riemann’s explicit formula, the Riemann hypothesis is equiv-
alent to

Li(x) = π(x) +O(x1/2 log x).

Exercise 2. Verify that Li(x) = π(x) +O(x1/2 log x).
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